Towards Optimal Multi-Dimensional Query
Processing with Bitmap Indices

Doron Rotem, Kurt Stockinger, and Kesheng Wu

Computational Research Division
Lawrence Berkeley National Laboratory
University of California
1 Cyclotron Road, Berkeley, California 94720, USA
{D_Rotem, KStockinger, KWu}@lbl.gov

Abstract. Bitmap indices have been widely used in scientific applica-
tions and commercial systems for processing complex, multi-dimensional
queries where traditional tree-based indices would not work efficiently.
This paper studies strategies for minimizing the access costs for process-
ing multi-dimensional queries using bitmap indices with binning. Inno-
vative features of our algorithm include (a) optimally placing the bin
boundaries and (b) dynamically reordering the evaluation of the query
terms. In addition, we derive several analytical results concerning op-
timal bin allocation for a probabilistic query model. Our experimental
evaluation with real life data shows an average I/O cost improvement of
at least a factor of 10 for multi-dimensional queries on datasets from two
different applications. Our experiments also indicate that the speedup
increases with the number of query dimensions.

1 Introduction

Modern data warehouse and scientific applications produce large amounts of
high-dimensional data. Due to the complexity and the size of these data sets,
efficient query processing is vital for retrieving results in real time.

Bitmap indexing is a common technique for processing complex, multi- di-
mensional ad-hoc queries on read-only data. They have been introduced into
several commercial DBMS products by database vendors including Red Brick
Systems, Sybase, IBM and Oracle.

The basic bitmap index uses every distinct value of the indexed attribute
as a key, and generates one bitmap containing as many bits as the number of
records in the dataset for each key [12]. The sizes of these basic bitmap indices
are relatively small for low-cardinality attributes, such as “gender”, “types of
houses sold in the San Francisco Bay Area”, or “car models produced by Fer-
rari.” However, for high-cardinality attributes such as “temperature values in a
supernova explosion”, the index sizes may be too large to be of any practical use.
In this case, bitmap indices are often designed with bins [17]. This bitmap in-
dex strategy partitions the attribute values into a number of ranges, called bins,
and uses bitmap vectors to represent bins (attribute ranges) rather than distinct

values. Although binning typically reduces storage costs for high-cardinality at-
tributes, it may increase the access costs of queries that do not fall on exact bin
boundaries (edge bins). For this kind of queries the original data values associ-
ated with edge bins must be accessed, in order to check them against the query
constraints.

Reﬁ;’ rd ?nggd 2:' 040 | 1120 | 2430 | 3140 | 44150 _
Edge bin
1 5 1 0 1] 0 0
2 34 [0 0 1 0 Internal bin
3 23 o 0 1 0 0
4 9 1 0 1] [1] 0
5 12] 1 1] 0 i}
6 5 1 0 0 [1] 1}
7 34 a 0 0 1 1}
3 42 a 0 0 [1] 1
9 11 o 1 a 1] o
10 22 L] 0 1 0 i}
11 44] 0 1] 0 1
12 23] 0 1 0 0
13 41 o 0 1] 0 1
14 18] 1 1] [1] 0
15 39] i} 1] 1 i}
-} -

8§ <A<37

Fig. 1. Two-sided range query 8 < A < 37 on a bitmap index with binning.

In this paper we are focusing on aggregation queries that are common in data
warehousing and scientific applications. These types of queries do not return
result records but rather statistical information on the result set, e.g. compute
the size of the result set. Figure 1 shows a small example of evaluating such
queries with binned bitmap indices. In this example we assume that an attribute
A has values between 0 and 50. The values of the attribute A are given in the
second leftmost column. The range of possible values of A is partitioned into five
sub-ranges (bins), namely [0,10], [11,20] etc. with a bin allocated to each sub-
range. The values of the sub-ranges are called bin boundaries. In this example,
the width of each bin is of the same size. A ”1-bit” indicates the attribute value
falls into the range, and ”0-bit” otherwise.

Assume that we want to evaluate the query ” Count the number of rows where
8 < A < 37”. The correct result should be 9. We know that all records that fall
into internal bins (highlighted in light gray) are sure hits (qualifying records).
These records are indicated by a “l1-bit” and are calculated by performing a
Boolean OR operation on all internal bins. On the other hand, records that fall
into so-called edge bins (highlighted in dark gray) contain both qualifying and
non-qualifying values. In order to prune the false positives, the original data
values need to be checked against the query constraint. In particular, all records

of the edge bins with a bit set to “1”, need to be checked. Such a check may
involve additional accesses to disk pages depending on how the attribute values
are stored.

Given the query 8 < A < 37, let us look at the candidate check for the left
edge bin. The candidate records are the records with IDs 1, 4 and 6. The values
of these records are 5, 9 and 5, respectively. The only qualifying record is record
4 that represents the value 9. The other two records do not fulfill the query
constraint and do not qualify. As we can see from this small example, the cost of
performing a candidate check on an edge bin is related to the number of “1-bits”
in that bin. The larger the number of candidates that need to be checked, the
higher the total query processing costs.

Our bitmap indexing software called FastBit [7] uses the binning strategy
of this example. FastBit has been used in production for High-Energy Physics
experiments [20] over the last several years. Recently we integrated our bitmap
index technology directly into the ROOT analysis framework [16] that has a user
community of some 10,000 scientists around the world. Based on the experience
we gained with the integration of our software and the feedback from the user
community, we identified the candidate check costs as the main bottleneck of
query processing. Moreover, by studying the query workloads of these experi-
ments, we identified certain patterns that could be helpful for designing more
efficient bitmap indices that take into account both data distributions and query
distributions. Given a fixed number of bins', the goal is to find the optimal bin
boundaries such that the number of candidates and thus the query processing
costs is minimized.

Before we outline the main contributions of this paper, we provide a brief
taxonomy of the major work on optimizing bitmap indices based on query access
patterns. We discuss further related work in Section 2.

1.1 Brief Taxonomy of Optimizing Bitmap Indices Based on Query
Access Patterns

In Table 1, most of the previous results in this area are classified according to
the problem dimensionality and the type of queries considered. Earlier work in
the area attempted to adjust bin sizes dynamically as the data is updated ([21]).
Most of the later work assumes read-only data and uses dynamic programming
algorithms to achieve optimal bin boundary placement ([10],[15],[14]). In the
multi-dimensional case, additional strategies for speeding up the queries were
studied. These include sophisticated strategies for pruning the potential sub-
set of candidates using Boolean operations [17] and dynamically reordering the
scanning of the bitmap indices based on estimated attribute selectivities [15].
Some more discussion about related work can be found in Section 2.

! For practical reasons the number of bins is often fixed. This guarantees that the size
of the bitmap index is below a certain storage threshold.

One- Dimensional

Multi-dimensional

Queries not considered

Dynamic bucket expansion and
contraction [21]

Point Queries

Optimal binning: dy-

ming using only query
endpoints [14]

namic programming
[10]
One-sided range queries Optimal evaluation strategies
for fixed binning and fixed eval-
uation order [17]
Two-sided range queries|Optimal binning:|-General problem NP complete
dynamic program-|[15]

-Optimal query evaluation re-
ordering [15]

-Dynamic programming for fixed
bin allocation (current paper)
-Bin allocation for probabilistic
model (current paper)

Table 1. Taxonomy of results on optimal binning for bitmap indexes.

1.2 Main Contributions of this Work

— We present optimization strategies to reduce the cost of query processing
using bitmap indices. The key features of our approach are: a) Optimal
placement of bin boundaries for multi-dimensional data sets. b) Reordering
the evaluation of multi-dimensional queries based on attribute selectivity

and I/O costs.

— Finding optimal bin allocations for a common query model with independent
probabilities of attributes being included in queries.

— We analyze the query processing costs of our Opt-binning strategy for queries
on two different data sets from applications that are used in production. This
guarantees that we evaluate our strategy on real use cases as opposed to
simplified synthetic data. Our results show that our binning strategy yields
significant improvements over traditional binning methods.

The rest of the paper is organized as follows. In Section 2 we discuss related
work on bitmap indices and binning strategies. In Section 3 some of our previous
results on single attribute optimal binning are presented. These results are used
as a building block in the multi-dimensional binning algorithms of Section 4.
In Section 5 we present results for the optimal choice of bin allocations for a
probabilistic query model. Section 6 discusses an additional optimization strat-
egy, namely attribute reordering. In Section 7 we evaluate our novel strategies
for optimizing multi-dimensional queries based on data sets from two different
applications. Finally in Section 8 we present our conclusions and discuss some

future work.

2 Related Work

Bitmap indices are used for speeding up complex, multi-dimensional queries for
On-Line Analytical Processing and data warehouse [6] as well as for scientific
applications [17]. The first commercial product to use the name bitmap index
is Model 204 [12]. Improvements on this approach called bit sliced-index are
discussed in [13].

In [4, 5] three bitmap encoding strategies are introduced: equality, range and
interval encoding. Equality-encoded bitmap indices show the best performance
for processing equality queries such as velocity = 108. Range encoding and in-
terval encoding are optimized for one-sided and two-sided range queries, respec-
tively. An example of a one-sided range query is density < 10°. A two-sided
range query, for instance, is 10® < density < 10°.

The authors of [22] represented attribute values in binary form that yields
indices with only [logs |A|] bitmaps, where |A] is the attribute cardinality. The
advantage of this encoding scheme is that the storage overhead is smaller than
for interval-encoding. However, in most cases query processing is more efficient
with interval encoding since in the worst case only two bitmaps need to be read
whereas with binary encoding always all bitmaps have to be read.

Various bitmap compression schemes were studied in [2,9]. The authors
demonstrated that the scheme named Byte-aligned Bitmap Code (BBC) [3]
shows the best overall performance characteristics. More recently a new com-
pression scheme called Word-Aligned Hybrid (WAH) [19] was introduced. This
compression algorithm significantly reduces the overall query processing time
compared to BBC. The main reason for the efficiency of WAH is that it uses a
much simpler compression algorithm.

The bitmap indices discussed so far encode each distinct attribute value as
one bitmap vector. This technique is very efficient for data values with low at-
tribute cardinalities (low number of distinct values). However, scientific applica-
tions are often based on data values with high attribute cardinalities. The work
presented in [17] demonstrated that bitmap indices with binning can significantly
speed up multi-dimensional queries on high-cardinality attributes.

A further bitmap index with binning called range-based bitmap indexing
was introduced in [21]. The idea is to evenly distribute skewed attribute values
onto various bins in order to achieve uniform search times for different queries.
The authors demonstrated that the algorithm efficiently redistributes highly
skewed data. However, performance results about query response times were not
discussed.

The work in [10] focuses on one-dimensional point (equality) queries rather
than range queries discussed in this paper. We extend the work of [10] by ana-
lyzing multi-dimensional range queries.

Binning strategies could also be used to provide histogram information. The
optimal construction of histograms for range queries that uses binning algorithms
and is discussed in [11,8]. The main difference between binning for histograms
and our work is that for bitmap indices precise answers are required. Therefore

the objective is to minimize disk access costs to edge bins. However, in the his-
togram case, some statistical techniques can be used to estimate errors without
actual access to original data on disk.

3 Choosing Optimal Bin Boundaries for Single-Attribute
Case

The OptBin problem for the single attribute case is defined as follows:

Assume a dataset D with one attribute in the range of [1,n], a set of range
queries Q and a constraint k on the number of bins. Find a set of k — 1 optimal
bin boundaries such that the query processing costs, i.e. the costs of the candidate
check, are minimized.

This problem is solved with a dynamic programming algorithm introduced
in [14]. Its time complexity is O(kr?) where r is the number of distinct query
endpoints of queries in Q and k is the constraint on the number of bins. As ex-
pected, the amount of cost savings (in terms of reduced I/0O for candidate check)
achieved by the algorithm increases with the degree of accuracy of our estima-
tions of data and query distributions. Fortunately, as bitmaps are mainly used
for read-only data, histograms representing data distribution information can be
collected at a minimal cost during bitmap index construction. Our experience
with scientific data also shows that query distribution can be collected effec-
tively by analyzing workload traces and understanding the kind of phenomena
the scientists are studying.

We will use an example to show that the optimal binning strategy depends
both on the data distribution and the query distribution. The data distribution
affects the binning strategy as one can allocate more bins to densely populated
regions of the data to avoid costly candidate check operations on edge bins with
many values. The query distribution characterizes the location of query endpoints
and the popularity of queries. The goal is to align bin boundaries with the query
endpoints and thus reduce the number of candidates in the edge bins. In addition,
more bins can be allocated to data regions that are heavily hit by queries.

In the example we assume a bitmap index with 12 bins. Using the dynamic
programming algorithm introduced in [14], we calculated the optimal bin bound-
aries for a one-dimensional attribute using 100 simulated range queries.

In the first example both the data and the query distribution generated from
a uniform distribution. In Figure 2 (a) the values of the data and the query end-
points fall in the range [0, 1500]. Next we calculated the optimal bin boundaries.
The result is a set of bins where the width of each bin is approximately the same
size.

In our second example we fixed the query distribution but changed the data
distribution. In Figure 2 (b) the values of the attribute are Gaussian distributed
(truncated in the range [0, 1500]) with mean 750 and standard deviation 230.
Again we calculated the optimal bin boundaries. We note that the bin sizes vary
showing wider bins on the edges of the range to reflect more sparsely popu-

T ES) ES i e = =D)) 2] TR
(a) Uniform range queries on uniform (b) Uniform range queries on Gaus-
data stan data

(c) Left-heavy range queries on Gaus-
sian data

Fig. 2. Optimal bin boundaries for various data and query distributions. The horizontal
lines represent range queries, e.g. 350 < A < 1201. The vertical lines indicate the
optimal bin boundaries that are calculated using our dynamic programming algorithm
taking into account both the data and the query distribution.

lated subregions. In short, the width of the bins changes depending on the data
distribution.

In our third example (see Figure 2 (c)) the generated query distribution is
skewed in the following way. The region 0 to 1500 is divided into three equal
subregions of size 500. Queries are generated over the three regions in the ratio
of 6:1:2. The optimal bin boundaries are characterized as follows. We can see
that the region 0 to 500, which is heavily hit by queries, is allocated 5 of the 12
bins whereas the region 1000 to 1500 gets only 3 bins to account for this skewed
query distribution (fewer queries falling into this region).

4 The Multi-Dimensional Candidate Check Problem

The general MultiOptBin problem is defined as follows:
Given a multi-dimensional dataset D, a set of range queries @ and a con-
straint k on the total number of bins, find t integers ki, ko,....,ky where k =

22:1 k; and locations for bin boundaries such that k; bins are allocated for the
bitmap index for attribute A; and the total expected I/0 cost of candidate check
is minimized.

The Multi-Dimensional candidate check problem is much more complex then
the single attribute case as several new factors are introduced. First, before we
can deal with bin boundary placement, we need to decide how many bins must
be allocated for each attribute. This in turn is dependent on several factors such
as the likelihood of an attribute to appear in a query as well as its selectivity.

In general, the total cost of multi-dimensional candidate check is a weighted
sum of candidate checks costs, cost(A;) , for each attribute A; appearing in the
query. The weights depend on attribute selectivities as each candidate check
results in pruning of the potential candidate subset. We only need to check
candidates that survived all previous prunings.

The candidate check cost cost(A;) for each attribute A; is a non-increasing
function of k;, the number of bins allocated to A;. Unfortunately, in the general
case the function is not known and depends on the data and query distribution.
It is therefore not surprising that the exact optimal solution to MultiOptBin is
NP-hard problem as shown in the next theorem.

Theorem 1. The MultiOptBin is NP-hard even if all queries in Q include a
range for only one attribute and all s;’s (attribute selectivities) are equal.

The proof of this theorem can be found in [15].

In our experiments we achieved a significant speed-up over naive bin alloca-
tions by using a sub-optimal strategy. The strategy consists of allocating a fixed
number of bins per attribute and then computing optimal bin boundaries by
applying the dynamic-programming algorithm separately on each attribute.

A closed-form solution to the multi-dimensional bin allocation problem can
be computed if all cost(A;)’s are differentiable functions under a probabilistic
model of query distributions. In Section 5 we show how this solution is computed.

5 Probabilistic Query Model

A different query model that appears in many works on multi-dimensional range
queries (see for example [1]) assumes that the query set @ is described by
a probabilistic model. For a query ¢, we denote by A; € ¢ the fact that a
range corresponding to attribute A; appears in ¢. This model assumes that the
probability of an attribute appearing in a query, denoted by p;, depends on
the attribute itself but is independent of the other attributes appearing in the
query, i.e, the probability p, that a query ¢ is submitted to the system satisfies

Pbq = |:HA1-Eq pi] [HAigq (1- pi)}

Let us renumber the attributes such that p; < py < ... < p;. In this case it is
intuitive not to allocate the same number of bins to each attribute but rather to
favor attributes with larger probabilities by allocating more bins to them. The
exact allocation also depends on the values of the s;’s (CC-selectivities) of the

attributes. The following theorem quantifies this observation for the case that
the s;’s are unknown and assumed equal, i.e., s; = sfor 1 < i < t. We also
assume that cost(A;), the cost of candidate check on attribute A;, is inversely
proportional to k; the number of bins allocated to it and proportional to the
number of candidate values, IV;, that still need to be checked, i.e., cost(4;) =
O(]IX’) This assumption is intuitively reasonable for attributes with close to
uniform data distribution. Increasing the number of bins by a factor f makes
each bin (including the edge bins) “narrower” by the same factor. Therefore the
1/O cost for the candidate check is reduced approximately by a factor of 1. In
fact our next closed form result can be applied to any expression for the function
cost(A;) as long as it is differentiable in terms of k;.

Theorem 2. Given a query set on t attributes each with CC-selectivity s and
probability p1 < ps < ... < py.
The optimal bin allocation satisfies:

kit1 \/ Dit1 .
= yforl <i <t 1
ks pi(1 = piy1(1 —s)) e

Proof (Outline): Let C(j,m) denote the expected cost of candidate check on
attributes Aj, As, .., A; with m available bins on a database of N records. (For
simplicity we omit N from the notation). Then

Clt k) = py(-

T + Ot =1,k —k)s) + (L —p)C(t -1,k — ki) (2)

The first term in the above equation corresponds to the probability of at-
tribute A; appearing in a random query. In this case we will search its bitmap
at a cost proportional to 1? We then have k — k; bins for the rest of the index
on attributes, and therefore we will pay the cost of C(t — 1,k — k) on the rest of
the index on attributes A, As, .., A, , with a candidate pool that is a fraction s
of the original one. The second term denotes the cost in case attribute A; is not
mentioned in the query.

This leads recursively to the expression

cr =3 2T, 0 -p-9) 9

The result of the theorem follows by finding the minimum of C(t, k) subject to
the constraint k = Zle k; using Lagrange multiplier techniques. This involves
solving the set of equations

8k ZPZH] o U=) FAQ k- k)| = (4)
i=1

for i=1,2,...t.

k= k (5)

O

To illustrate the above theorem, we show bin allocations of 1000 bins among
four attributes with probabilities 0.1, 0.2, 0.7 and 0.8 (see Figure 3). For all
attributes we assume the same selectivity s. We show the optimal bin allocation
for s ranging between 0 and 1. For example, for selectivity s = 0.4, the attributes
A; to Ay get the following number of bins allocated 85, 129, 317 and 469 (see
dashed line). Also note that with smaller values of s, the ratio between the
number of bins allocated to A4 and Aj is larger. Further experimental results
are given in Section 7.

Number of bins

\\\hﬁ_\}kp’zm

p1=0.1

0.2 04 06 08
Selectivity

Fig. 3. Optimal bin allocation as a function of candidate selectivity.

6 Query Evaluation With Attribute Reordering

Assuming that bitmap indices are already provided for each attribute, we proceed
to show that additional speed-up can be achieved by reordering the scanning of
the bitmap indices for attributes appearing in the query.

For a given multi-dimensional query ¢ that involves ¢ attributes there are ¢!
different ways of ordering the attributes for the candidate elimination step of the

strategy presented in [17]. In this section we show that an optimal attribute order
can be obtained if we have some estimation of the ratio of surviving candidates
after performing candidate check on each attribute A;. This ratio is denoted by
s; (CC-selectivity), it can be estimated by the degree of overlap of the query ¢
with its edge bins of A; and some knowledge of the data distribution. We also
need some estimation of the I/O costs incurred by performing the candidate
check on attribute A; which we denote by cost(A;) .

Theorem 3. Given a query q = 0221 r; assume the I/0 cost involved in can-
didate checking for range r; is cost(A;) and the fraction of records surviving the
candidate check on this range (CC-selectivity) is s;.

We assume that for alli , 0 < s; < 1 thus omitting the trivial cases where
for some range r; either s; =0 or s; = 1. Using the notation g; = colsi(ii’) , the
optimal ordering of attributes for candidate check evaluation is according to the

)

sorted non-decreasing order of g; ’s.

Our bitmap index software FastBit provides two mechanisms for estimating
the query selectivity. One approach is to estimate the selectivity based on the cost
model presented in [17] Another approach is retrieve the selectivity information
directly from the bitmap indices by counting the number of hits during the
candidate check phase.

7 Experimental Results

In this section we evaluate the performance of multi-dimensional queries that
are optimized with our novel bitmap index strategies. The performance mea-
surements are based on two different data sets from applications that are used
in production. This guarantees that we evaluate our strategy on large real data
sets as opposed to simplified synthetic data sets.

The first data set contains network traffic data that was collected at Berkeley
Lab in May 2005. The second data set is based on a supernova explosion from
the Tera Scale Initiative [18]. The goal of our experiments is to compare our
binning approach with one of the most commonly used binning strategies in
production environments that is called Equi-depth. This binning strategy places
the bin boundaries in such a way that each bin has approximately the same
number of entries. The advantage of equi-depth binning is that it reduces the
worst-case query processing costs.

As we have pointed out in the introductory section, the bottleneck of bitmap
indices with bins is the candidate check. In other words, the higher the number of
candidates that need to be checked against the query constraint, the higher the
query processing costs. Thus, in this section we use the term query processing
costs as a synonym for candidate check costs.

7.1 Network Traffic Data

Data Characteristics The network traffic data set we used for our experiments
contains incoming and outgoing network traffic to and from Berkeley Lab. The

data set includes attributes such as DestinationIP, SourcelP, DestinationPort,
SourcePort, SourceBytesPerPacket, DestinationBytesPerPacket, StartTime, etc.
The data set contains 10.2 million records and 8 attributes.

Query Processing Costs For our experiments we generated 1,000 random uni-
formly distributed queries that cover the whole domain space for each attribute.
For these 1000 queries we ran our optimization algorithm and calculated the op-
timal bin boundaries for 100 bins per attribute. Next we built the bitmap indices
accordingly. Figure 4 shows the query processing costs for two attributes for the
binning strategies Opt-binning and Equi-depth binning. The costs are expressed
in terms of the number of candidates that need to be accessed in the candidate
check. The graphs show the performance of 100 randomly sampled queries that
are sorted according to the costs of Opt-binning. For all measured attributes, the
processing costs of Opt-binning are, on average, a factor of 3 smaller compared
with Equi-depth.

@ Opt-binning ® Equi-depth @ Opt-binning @ Equi-depth

310000

1000000

260000
100000 3

210000

160000

10000
110000

Number of candidates
Number of candidates

1000 Frrrerer

10000

Query number (sorted by Opt-binning) Query number (sorted by Opt-binning)

(a) DestinationPort (b) SourceBytesPerPacket

Fig. 4. Query processing costs for attribute DestinationPort and SourceBytesPer-
Packet. Note: The query processing costs are proportional to the area of the graph. On
average, the processing costs of Opt-binning are a factor of 3 smaller than for equi-depth
binning.

Location of Bin Boundaries To show the effect of Opt-binning on the location
of the bin boundaries, we plotted the boundaries of Opt-binning and compared
them with Equi-depth binning (see Figure 5). For instance, for attribute Desti-
nationPort in Figure 5 (a), the bin boundaries change significantly starting from
bin 25. Fqui-depth binning keeps the bin boundaries equally sized up to bin 60,
whereas Opt-binning changes the bin boundaries already with bin 25 to reflect
the query distributions.

—— Opt-binning - - - - Equi-depth —— Opt-binning - - - - Equi-depth

70000 1600

50000 1400

50000 120

al

40000

30000

Bin boundary
Bin boundary

20000

10000

(a) DestinationPort (b) SourceBytesPerPacket

Fig. 5. Bin boundaries for attribute (a) DestinationPort and (b) SourceBytesPerPacket.

Multi-Dimensional Queries Next, we measured the query processing costs
for multi-dimensional queries. Figure 6 shows the cost improvement factor of
Opt-binning over FEqui-depth. For 4-dimensional queries, the cost improvement
of Opt-binning over equi-depth binning is about a factor of 9. We can also see that
as the number of query dimensions increases, the cost improvement increases as
well. This is due the fact that our strategy Opt-binning does a dynamic cost-based
reordering of the attributes for multi-dimensional queries as shown in Theorem
3.

Optimal Number of Bins In the next experiment we evaluated our novel opti-
mization strategy for further reducing the query processing costs. In our previous
experiments we used the same number of bins for each attribute. Now we calcu-
late the optimal number of bins for each attribute depending on the probability
of being contained in a multi-dimensional query expression. This optimization
strategy is motivated by the observations we made during the analysis of real
query workloads [14]. In multi-dimensional queries the number of attributes per
query often changes. Thus, different attributes often show different probabilities
of being contained in a certain query expression. The key idea of calculating the
optimal number of bins is to increase the number of bins for those attributes that
have a higher probability of being contained in a set of queries. For attributes
that have a lower probability, the number of bins is reduced.

In order to study this strategy we generated 5000 queries with up to four
dimensions. For each attribute we assume a different probability of being con-
tained in the query expression. Given these probabilities, the optimal number
of bins is calculated according to Equation 1. Table 2 shows the probabilities
and the respective optimal number of bins for the four attributes of our query
workload.

Cost improvement factor

1D 20 30 40

Query dimensionality

Fig. 6. Cost improvement factor of Opt-binning over equi-depth binning for multi-
dimensional queries. For 4-dimensional queries, the cost improvement of Opt-binning
over equi-depth binning is about a factor of 9.

Attribute Probability |Opt. #bins
SourcePort 0.8 199
DestinationPort |0.7 123
StartTime 0.2 47
SrcBytesPerPacket|0.1 31

Table 2. Probabilities for attributes to be contained in a query expression along with
the respective optimal number of bins.

Next we computed the optimal bin boundaries where each attribute has
a different number of bins (as shown in Table 2). In addition, we computed
the optimal bin boundaries where each attribute has 100 bins (as we did in
our previous experiments). The experiments show that calculating the optimal
number of bins reduces the I/O costs by another 30% compared with the optimal
strategy where each attribute has the same number of bins.

7.2 Astrophysics Data

The astrophysics data set is one order of magnitude larger than the network
traffic data set. The challenge was to measure how Opt-binning performs for
this large data set of 110 million records and 6 attributes such as z-velocity, y-
velocity, z-velocity, density, pressure and entropy. The data distributions of two
of the attributes are shown in Figure 7.

Since the number of records of this data set is much larger than the previous
one, we increased the number of bins to 1000. We also increased the number of

4000000

1000000000

3500000 . 100000000
3000000 o 10000000
1000000
2500000 .. > R
S * . > < oo,
@ . * @
< 2000000 ., . N s ,’.
o ¢ . . .o o 10000 o .
2 M MR @ LN
2 1500000 . @
w . CICAIPERR) = 1000 0..’:..‘” .
. v . . I e syt e
1000000 R ‘Y 100 R A A IR
LK ‘et DRK .,
500000 AP % o
AR *,
ot N
.
0 o~ *ey 1

08 06 04 02 0 02

Attribute value

(a) z-velocity

0

1000

2000 3000 4000 5000

Attribute value

(b) density

6000 7000 600D

Fig. 7. Distribution of attributes (a) z-velocity and (b)density.

queries to 5000. In addition, we made an important change to the query distri-
bution according to the following observation. In our previous work we studied
the work load of real queries from the Sloan Digital Sky Survey [14] and High-
Energy Physics [20]. The main observation is that the query distributions are
often not uniform but centered around either the peaks of the data distribution
or around the tails. Thus, we experimented with different query distributions
that follow these basic rules.

The distribution of attribute z-velocity is centered around 0 (see Figure 7
(a)). For this attribute we generated 5000 queries that are centered around 0
and calculated the optimal bin boundaries for 1000 bins accordingly. Figure 8
(a) shows that the query processing costs for Opt-binning are about a factor of
13 lower than the costs for Fqui-depth.

Next, we generated 5000 queries for attribute y-velocity that has a similar
distribution as attribute z-velocity. However, rather than centering the query
distribution around 0, we produced a right-skewed distribution where most of
the queries hit the right side (tail) of the data. Also for this kind of query
workload, Opt-binning reduces the query processing costs by more than a factor
of 10 compared with Equi-depth binning (see Figure 8 (b)).

Multi-Dimensional Queries Finally, we measured the query processing costs
for multi-dimensional queries on two and three attributes. Figure 9 shows the
cost improvement factor of Opt-binning over Equi-depth which is between 11.5
and 17.5. Similar to the network traffic queries, we can see that as the number of
query dimensions increases, the cost improvement of Opt-binning increases even
more significantly.

@ Opt-binning M Equi-depth @ Opt-binning m Equi-depth

350000 300000

300000

250000

250000
200000

200000
150000
150000

100000

100000

Number of candidates
Number of candidates

50000 50000

Query number (sorted by Opt-binning) Query number (sorted by Opt-binning)
(a) z-velocity (b) y-velocity

Fig. 8. Query processing costs for attribute z-velocity and y-velocity. Note: The query
processing costs are proportional to the area of the graph. On average, the processing
costs of Opt-binning are a factor of 10 to 13 smaller than for equi-depth binning.

@

Cost improvement factor

[}

=}

10 i) 3D

Query dimensionality

Fig. 9. Cost improvement factor of Opt-binning over Equi-depth for multi-dimensional
queries. For 3-dimensional queries, the cost improvement of Opt-binning over equi-depth
binning is about a factor of 17.5.

8 Conclusions

In this paper we presented an algorithm for optimizing the costs of multi-
dimensional queries with bitmap indices. Our approach is based on the following
two steps: a) Given a set of data distributions and a set of query distributions,
find an optimal placement for the bin boundaries such that the number of can-
didates that need to be checked against the query constraints is minimized. b)

Reorder the evaluation of the attributes in multi-dimensional queries according
to the estimated attribute selectivity.

We performed both analytical and experimental studies to evaluate the ef-
ficiency of our strategy. Our experiments were based on two data sets from
applications that are used in production. For the analyzed data sets we achieved
a performance improvement in the range of 3 to 17. The results show that as the
number of query dimensions increases, the efficiency of our algorithm increases
as well. The increased performance improvement is due to the cost-based re-
ordering of query attributes that significantly reduces the number of candidate
records and thus the total cost for query processing.

Future work involves testing our optimization techniques against other bin-
ning strategies. A further direction of future work is to design bin allocation
algorithms for probabilistic queries with attribute dependencies.

References

1. A. V. Aho and J. D. Ullman. Optimal Partial-Match Retrieval When Fields Are
Independently Specified. ACM Trans. Database Syst., 4(2):168-179, 1979.

2. S. Amer-Yahia and T. Johnson. Optimizing Queries on Compressed Bitmaps.
In International Conference on Very Large Data Bases (VLDB), Cairo, Egypt,
September 2000. Morgan Kaufmann.

3. G. Antoshenkov. Byte-aligned Bitmap Compression. Technical report, Oracle
Corp., 1994. U.S. Patent number 5,363,098.

4. C.-Y. Chan and Y. E. Ioannidis. Bitmap Index Design and Evaluation. In SIG-
MOD, Seattle, Washington, USA, June 1998. ACM Press.

5. C. Y. Chan and Y. E. Ioannidis. An Efficient Bitmap Encoding Scheme for Se-
lection Queries. In SIGMOD, Philadelphia, Pennsylvania, USA, June 1999. ACM
Press.

6. S. Chaudhuri and U. Dayal. An Overview of Data wharehousing and OLAP Tech-
nology. ACM SIGMOD Record, 26(1):65-74, March 1997.

7. FastBit - An Efficient Compressed Bitmap Index Technology.
http://sdm.lbl.gov/fastbit/.

8. S. Guha, N. Koudas, and D. Srivastava. Fast Algorithms For Hierarchical Range
Histogram Construction. In PODS 2002, Madison, Wisconsin, USA, June 2002.
ACM Press.

9. T. Johnson. Performance Measurements of Compressed Bitmap Indices. In In-
ternational Conference on Very Large Data Bases (VLDB), Edinburgh, Scotland,
September 1999. Morgan Kaufmann.

10. N. Koudas. Space Efficient Bitmap Indexing. In International Conference on Infor-
mation and Knowledge Management (CIKM), McLean, Virginia, USA, November
2000. ACM Press.

11. N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal Histograms for Hierar-
chical Range Queries. In PODS, Dallas, Texas, USA, 2000. ACM Press.

12. P. O’Neil. Model 204 Architecture and Performance. In 2nd International Work-
shop in High Performance Transaction Systems, Asilomar, California, USA, 1987.
Springer-Verlag.

13. P. O’Neil and D. Quass. Improved Query Performance with Variant Indexes. In
Proceedings International Conference on Management of Data (SIGMOD), Tucson,
Arizona, USA, May 1997. ACM Press.

14.

15.

16.

17.

18.
19.

20.

21.

22.

D. Rotem, K. Stockinger, and K. Wu. Optimizing Candidate Check Costs for
Bitmap Indices. In International Conference on Information and Knowledge Man-
agement (CIKM), Bremen, Germany, November 2005. ACM Press.

D. Rotem, K. Stockinger, and K. Wu. Optimizing I/O Costs of Multi-Dimensional
Queries using Bitmap Indices. In International Conference on Database and Expert
Systems Applications (DEXA), Kopenhagen, Denmark, August 2005. Springer-
Verlag.

K. Stockinger, K. Wu, R. Brun, and P. Canal. Bitmap Indices for Fast End-
User Physics Analysis in ROOT. In Nuclear Instruments and Methods in Physics
Research. Elsevier. to appear.

K. Stockinger, K. Wu, and A. Shoshani. FEvaluation Strategies for Bitmap In-
dices with Binning. In International Conference on Database and Expert Systems
Applications (DEXA), Zaragoza, Spain, September 2004. Springer-Verlag.
TeraScale Supernova Initiative. http://www.phy.ornl.gov/tsi/.

K. Wu, E. J. Otoo, and A. Shoshani. On the Performance of Bitmap Indices
for High Cardinality Attributes. In International Conference on Very Large Data
Bases (VLDB), Toronto, Canada, September 2004. Morgan Kaufmann.

K. Wu, W.-M. Zhang, V. Perevoztchikov, J. Lauret, and A. Shoshani. The Grid
Collector: Using an Event Catalog to Speedup User Analysis in Distributed En-
vironment. In Computing in High Energy and Nuclear Physics (CHEP) 2004,
Interlaken, Switzerland, September 2004.

K.-L. Wu and P.S. Yu. Range-Based Bitmap Indexing for High Cardinality At-
tributes with Skew. In COMPSAC, pages 61-67, 1998.

M.-C. Wu and A. P. Buchmann. Encoded Bitmap Indexing for Data Warehouses.
In International Conference on Data Engineering (ICDE), Orlando, Florida, USA,
February 1998. IEEE Computer Society Press.

